
Designing BIBTEX Styles
Oren Patashnik

February 8, 1988

5 Bibliography-style hacking
This document starts (and ends) with Section 5, because in reality it is the final
section of “BI B TEXing” [Error: Reference source not found], the general documentation
for BI B TEX. But that document was meant for all BI B TEX users, while this one is just
for style designers, so the two are physically separate. Still, you should be completely
familiar with “BI B TEXing”, and all references in this document to sections and section
numbers assume that the two documents are one.

This section, along with the standard-style documentation file btxbst.doc,
should explain how to modify existing style files and to produce new ones. If you’re a
serious style hacker you should be familiar with van Leunen [Error: Reference source
not found] for points of style, with Lamport [Error: Reference source not found] and
Knuth [Error: Reference source not found] for formatting matters, and perhaps with
Scribe [Error: Reference source not found] for compatibility details. And while you’re
at it, if you don’t read the great little book by Strunk and White [Error: Reference
source not found], you should at least look at its entries in the database and the
reference list to see how BI B TEX handles multiple names.

To create a new style, it’s best to start with an existing style that’s close to yours,
and then modify that. This is true even if you’re simply updating an old style for BI B
TEX version 0.99 (I’ve updated four nonstandard styles, so I say this with some
experience). If you want to insert into a new style some function you’d written for an
old (version 0.98i) style, keep in mind that the order of the arguments to the
assignment (:=) function has been reversed. When you’re finished with your style,
you may want to try running it on the entire XAMPL.BIB database to make sure it
handles all the standard entry types.

If you find any bugs in the standard styles, or if there are things you’d like to do
with bibliography-style files but can’t, please complain to Oren Patashnik.

5.1 General description
You write bibliography styles in a postfix stack language. It’s not too hard to figure
out how by looking at the standard-style documentation, but this description fills in a
few details (it will fill in more details if there’s a demand for it).

Basically the style file is a program, written in an unnamed language, that tells BI
B TEX how to format the entries that will go in the reference list (henceforth “the entries”
will be “the entry list” or simply “the list”, context permitting). This programming language
has ten commands, described in the next subsection. These commands manipulate the
language’s objects: constants, variables, functions, the stack, and the entry list. (Warning:

1

The terminology in this documentation, chosen for ease of explanation, is slightly different
from BI B TEX’s. For example, this documentation’s “variables” and “functions” are both
“functions” to BI B TEX. Keep this in mind when interpreting BI B TEX’s error messages.)

There are two types of functions: built-in ones that BI B TEX provides (these are
described in Section 5.3), and ones you define using either the MACRO or FUNCTION
command.

Your most time-consuming task, as a style designer, will be creating or modifying
functions using the FUNCTION command (actually, becoming familiar with the
references listed above will be more time consuming, but assume for the moment that
that’s done).

Let’s look at a sample function fragment. Suppose you have a string variable
named label and an integer variable named lab.width, and suppose you want to
append the character ‘a’ to label and to increment lab.width:

        .    .    .
        label "a" * 'label :=                    % label := label *
"a"
        lab.width #1 + 'lab.width :=      % lab.width := 
lab.width + 1
        .    .    .

In the first line, label pushes that variable’s value onto the stack. Next, the "a"
pushes the string constant ‘a’ onto the stack. Then the built-in function * pops the top
two strings and pushes their concatenation. The ’label pushes that variable’s name
onto the stack. And finally, the built-in function := pops the variable name and the
concatenation and performs the assignment. BI B TEX treats the stuff following the %
as a comment in the style file. The second line is similar except that it uses #1, with
no spaces intervening between the ‘#’ and the ‘1’, to push this integer constant.

The nonnull spacing here is arbitrary: multiple spaces, tabs, or newlines are
equivalent to a single one (except that you’re probably better off not having blank
lines within commands, as explained shortly).

For string constants, absolutely any printing character is legal between two
consecutive double quotes, but BI B TEX here (and only here) treats upper- and
lower-case equivalents as different. Furthermore, spacing is relevant within a string
constant, and you mustn’t split a string constant across lines (that is, the beginning
and ending double quotes must be on the same line).

Variable and function names may not begin with a numeral and may not contain
any of the ten restricted characters on page 143 of the LATEX book, but may
otherwise contain any printing characters. Also, BI B TEX considers upper- and
lower-case equivalents to be the same.

Integers and strings are the only value types for constants and variables (booleans
are implemented simply as 0-or-1 integers). There are three kinds of variables:

global variables These are either integer- or string-valued, declared using an
INTEGERS or STRINGS command.

2

entry variables These are either integer- or string-valued, declared using the
ENTRY command. Each has a value for each entry on the list (example: a
variable label might store the label string you’ll use for the entry).

fields These are string-valued, read-only variables that store the information from
the database file; their values are set by the READ command. As with entry
variables, each has a value for each entry.

5.2 Commands
There are ten style-file commands: Five (ENTRY, FUNCTION, INTEGERS,
MACRO, and STRINGS) declare and define variables and functions;
one (READ) reads in the database information;
and four (EXECUTE, ITERATE, REVERSE,
and SORT) manipulate the entries and produce output. Although the command names
appear here in upper case, BI B TEX ignores case differences.

Some restrictions: There must be exactly one ENTRY and one READ command;
the ENTRY command, all MACRO commands, and certain FUNCTION commands (see
next subsection’s description of call.type$) must precede the READ command;
and the READ command must precede the four that manipulate the entries and
produce output.

Also it’s best (but not essential) to leave at least one blank line between
commands and to leave no blank lines within a command; this helps BI B TEX
recover from any syntax errors you make.

You must enclose each argument of every command in braces. Look at the
standard-style documentation for syntactic issues not described in this section. Here
are the ten commands:

ENTRY Declares the fields and entry variables. It has three arguments, each a
(possibly empty) list of variable names. The three lists are of: fields, integer
entry variables, and string entry variables. There is an additional field that BI
B TEX automatically declares, crossref, used for cross referencing. And there
is an additional string entry variable automatically declared, sort.key$, used by
the SORT command. Each of these variables has a value for each entry on the list.

EXECUTE Executes a single function. It has one argument, the function name.

FUNCTION Defines a new function. It has two arguments; the first is the
function’s name and the second is its definition. You must define a function
before using it; recursive functions are thus illegal.

INTEGERS Declares global integer variables. It has one argument, a list of
variable names. There are two such automatically-declared variables,
entry.max$ and global.max$, used for limiting the lengths of string
variables. You may have any number of these commands, but a variable’s
declaration must precede its use.

3

ITERATE Executes a single function, once for each entry in the list, in the list’s
current order (initially the list is in citation order, but the SORT command may
change this). It has one argument, the function name.

MACRO Defines a string macro. It has two arguments; the first is the macro’s
name, which is treated like any other variable or function name, and the
second is its definition, which must be double-quote-delimited. You must have
one for each three-letter month abbreviation; in addition, you should have one
for common journal names. The user’s database may override any definition
you define using this command. If you want to define a string the user can’t
touch, use the FUNCTION command, which has a compatible syntax.

READ Dredges up from the database file the field values for each entry in the list.
It has no arguments. If a database entry doesn’t have a value for a field (and
probably no database entry will have a value for every field), that field
variable is marked as missing for the entry.

REVERSE Exactly the same as the ITERATE command except that it executes
the function on the entry list in reverse order.

SORT Sorts the entry list using the values of the string entry variable
sort.key$. It has no arguments.

STRINGS Declares global string variables. It has one argument, a list of variable
names. You may have any number of these commands, but a variable’s
declaration must precede its use.

5.3 The built-in functions
Before we get to the built-in functions, a few words about some other built-in objects.
There is one built-in string entry variable, sort.key$, which the style program
must set if the style is to do sorting. There is one built-in field, crossref, used for
the cross referencing feature described in Section 4. And there are two built-in integer
global variables, entry.max$ and global.max$, which are set by default to
some internal BI B TEX constants; you should truncate strings to these lengths before
you assign to string variables, so as to not generate any BI B TEX warning messages.

There are currently 37 built-in functions. Every built-in function with a letter in its
name ends with a ‘$’. In what follows, “first”, “second”, and so on refer to the order
popped. A “literal” is an element on the stack, and it will be either an integer value, a
string value, a variable or function name, or a special value denoting a missing field.
If any popped literal has an incorrect type, BI B TEX complains and pushes the
integer 0 or the null string, depending on whether the function was supposed to push
an integer or string.

> Pops the top two (integer) literals, compares them, and pushes the integer 1 if
the second is greater than the first, 0 otherwise.

< Analogous.

4

= Pops the top two (both integer or both string) literals, compares them, and
pushes the integer 1 if they’re equal, 0 otherwise.

+ Pops the top two (integer) literals and pushes their sum.

- Pops the top two (integer) literals and pushes their difference (the first
subtracted from the second).

* Pops the top two (string) literals, concatenates them (in reverse order, that is,
the order in which pushed), and pushes the resulting string.

:= Pops the top two literals and assigns to the first (which must be a global or
entry variable) the value of the second.

add.period$ Pops the top (string) literal, adds a ‘.’ to it if the last non‘}’
character isn’t a ‘.’, ‘?’, or ‘!’, and pushes this resulting string.

call.type$ Executes the function whose name is the entry type of an entry.
For example if an entry is of type book, this function executes the book
function. When given as an argument to the ITERATE command,
call.type$ actually produces the output for the entries. For an entry with
an unknown type, it executes the function default.type. Thus you should
define (before the READ command) one function for each standard entry type
as well as a default.type function.

change.case$ Pops the top two (string) literals; it changes the case of the
second according to the specifications of the first, as follows. (Note: The word
‘letters’ in the next sentence refers only to those at brace-level 0, the top-most
brace level; no other characters are changed, except perhaps for “special
characters”, described in Section 4.) If the first literal is the string ‘t’, it
converts to lower case all letters except the very first character in the string,
which it leaves alone, and except the first character following any colon and
then nonnull white space, which it also leaves alone; if it’s the string ‘l’, it
converts all letters to lower case; and if it’s the string ‘u’, it converts all letters
to upper case. It then pushes this resulting string. If either type is incorrect, it
complains and pushes the null string; however, if both types are correct but
the specification string (i.e., the first string) isn’t one of the legal ones, it
merely pushes the second back onto the stack, after complaining. (Another
note: It ignores case differences in the specification string; for example, the
strings t and T are equivalent for the purposes of this built-in function.)

chr.to.int$ Pops the top (string) literal, makes sure it’s a single character,
converts it to the corresponding ASCII integer, and pushes this integer.

cite$ Pushes the string that was the \cite-command argument for this entry.

duplicate$ Pops the top literal from the stack and pushes two copies of it.

empty$ Pops the top literal and pushes the integer 1 if it’s a missing field or a
string having no non-white-space characters, 0 otherwise.

5

format.name$ Pops the top three literals (they are a string, an integer, and a
string literal). The last string literal represents a name list (each name
corresponding to a person), the integer literal specifies which name to pick
from this list, and the first string literal specifies how to format this name, as
explained in the next subsection. Finally, this function pushes the formatted
name.

if$ Pops the top three literals (they are two function literals and an integer
literal, in that order); if the integer is greater than 0, it executes the second
literal, else it executes the first.

int.to.chr$ Pops the top (integer) literal, interpreted as the ASCII integer
value of a single character, converts it to the corresponding single-character
string, and pushes this string.

int.to.str$ Pops the top (integer) literal, converts it to its (unique) string
equivalent, and pushes this string.

missing$ Pops the top literal and pushes the integer 1 if it’s a missing field,
0 otherwise.

newline$ Writes onto the bbl file what’s accumulated in the output buffer. It
writes a blank line if and only if the output buffer is empty. Since write$
does reasonable line breaking, you should use this function only when you
want a blank line or an explicit line break.

num.names$ Pops the top (string) literal and pushes the number of names the
string represents—one plus the number of occurrences of the substring “and”
(ignoring case differences) surrounded by nonnull white-space at the top brace
level.

pop$ Pops the top of the stack but doesn’t print it; this gets rid of an unwanted
stack literal.

preamble$ Pushes onto the stack the concatenation of all the @PREAMBLE
strings read from the database files.

purify$ Pops the top (string) literal, removes nonalphanumeric characters
except for white-space characters and hyphens and ties (these all get
converted to a space), removes certain alphabetic characters contained in the
control sequences associated with a “special character”, and pushes the
resulting string.

quote$ Pushes the string consisting of the double-quote character.

skip$ Is a no-op.

stack$ Pops and prints the whole stack; it’s meant to be used for style designers
while debugging.

substring$ Pops the top three literals (they are the two integers literals len and
start, and a string literal, in that order). It pushes the substring of the (at most)

6

len consecutive characters starting at the startth character (assuming 1-based
indexing) if start is positive, and ending at the −startth character from the end
if start is negative (where the first character from the end is the last character).

swap$ Swaps the top two literals on the stack.

text.length$ Pops the top (string) literal, and pushes the number of text
characters it contains, where an accented character (more precisely, a “special
character”, defined in Section 4) counts as a single text character, even if it’s
missing its matching right brace, and where braces don’t count as text
characters.

text.prefix$ Pops the top two literals (the integer literal len and a string
literal, in that order). It pushes the substring of the (at most) len consecutive
text characters starting from the beginning of the string. This function is
similar to substring$, but this one considers a “special character”, even if
it’s missing its matching right brace, to be a single text character (rather than
however many ASCII characters it actually comprises), and this function
doesn’t consider braces to be text characters; furthermore, this function
appends any needed matching right braces.

top$ Pops and prints the top of the stack on the terminal and log file. It’s useful
for debugging.

type$ Pushes the current entry’s type (book, article, etc.), but pushes the null
string if the type is either unknown or undefined.

warning$ Pops the top (string) literal and prints it following a warning
message. This also increments a count of the number of warning messages
issued.

while$ Pops the top two (function) literals, and keeps executing the second as
long as the (integer) literal left on the stack by executing the first is greater
than 0.

width$ Pops the top (string) literal and pushes the integer that represents its
width in some relative units (currently, hundredths of a point, as specified by
the June 1987 version of the cmr10 font; the only white-space character with
nonzero width is the space). This function takes the literal literally; that is, it
assumes each character in the string is to be printed as is, regardless of
whether the character has a special meaning to TEX, except that “special
characters” (even without their right braces) are handled specially. This is
meant to be used for comparing widths of label strings.

write$ Pops the top (string) literal and writes it on the output buffer (which will
result in stuff being written onto the bbl file when the buffer fills up).

Note that the built-in functions while$ and if$ require two function literals on
the stack. You get them there either by immediately preceding the name of a function
by a single quote, or, if you don’t feel like defining a new function with the

7

FUNCTION command, by simply giving its definition (that is, giving what would be
the second argument to the FUNCTION command, including the surrounding braces).
For example the following function fragment appends the character ‘a’ if the string
variable named label is nonnull:

        .    .    .
        label "" =
            'skip$
            { label "a" * 'label := }
        if$
        .    .    .

A function whose name you quote needn’t be built in like skip$ above—it may, for
example, be a field name or a function you’ve defined earlier.

5.4 Name formatting
What’s in a name? Section 4 pretty much describes this. Each name consists of four
parts: First, von, Last, and Jr; each consists of a list of name-tokens, and any list but
Last’s may be empty for a nonnull name. This subsection describes the format string
you must supply to the built-in function format.name$.

Let’s look at an example of a very long name. Suppose a database entry [Error:
Reference source not found] has the field

    author = "Charles Louis Xavier Joseph de la Vall{\'e}e
Poussin"

and suppose you want this formatted “last name comma initials”. If you use the
format string

        "{vv~}{ll}{, jj}{, f}?"

BI B TEX will produce

        de~la Vall{\'e}e~Poussin, C.~L. X.~J?

as the formatted string.
Let’s look at this example in detail. There are four brace-level 1 pieces to this

format string, one for each part of a name. If the corresponding part of a name isn’t
present (the Jr part for this name), everything in that piece is ignored. Anything at
brace-level 0 is output verbatim (the presumed typo ‘?’ for this name is at brace-
level 0), but you probably won’t use this feature much.

Within each piece a double letter tells BI B TEX to use whole tokens, and a single
letter, to abbreviate them (these letters must be at brace-level 1); everything else
within the piece is used verbatim (well, almost everything—read on). The tie at the
end of the von part (in {vv~}) is a discretionary tie—BI B TEX will output a tie at
that point if it thinks there’s a need for one; otherwise it will output a space. If you

8

really, really, want a tie there, regardless of what BI B TEX thinks, use two of them
(only one will be output); that is, use {vv~~}. A tie is discretionary only if it’s the
last character of the piece; anywhere else it’s treated as an ordinary character.

BI B TEX puts default strings between tokens of a name part: For whole tokens it
uses either a space or a tie, depending on which one it thinks is best, and for
abbreviated tokens it uses a period followed by either a space or a tie. However it
doesn’t use this default string after the last token in a list; hence there’s no period
following the ‘J’ for our example. You should have used

        "{vv~}{ll}{, jj}{, f.}"

to get BI B TEX to produce the same formatted string but with the question mark
replaced by a period. Note that the period should go inside the First-name piece,
rather than where the question mark was, in case a name has no First part.

If you want to override BI B TEX’s default between-token strings, you must
explicitly specify a string. For example suppose you want a label to contain the first
letter from each token in the von and Last parts, with no spaces; you should use the
format string

        "{v{}}{l{}}"

so that BI B TEX will produce ‘dlVP’ as the formatted string. You must give a string
for each piece whose default you want overridden (the example here uses the null
string for both pieces), and this string must immediately follow either the single or
double letter for the piece. You may not have any other letters at brace-level 1 in the
format string.

9

